

Universal Space Network Services

GS SDR Section 9

Ross Cox

Ground System Engineer

USN Overview - Why USN?

The GLAST Mission needs USN because:

- Ku-band System must outgas for two days after launch
 - We need a way to get the housekeeping data from the recorders right after launch
- In the event of an anomaly, pointing may not be sufficient for Ku-band support
- USNs Hawaii and Dongarra sites are convenient to our orbit
 - Good coverage every day.
- SWIFT Experience

USN Overview

Link Rates

- Telemetry
 - 20 Mbps SCI PB
 - 2.5 Mbps HK PB
 - 51 kbps Real Time HK
 - 1 kbps Real Time Alerts
- Command
 - 2 kbps

Tracking

No Tracking Required

Scheduling interface

E-mail Interface

System Features

- Requires two strings of equipment
- Pay per pass support structure
- Good coverage for long duration passes from two stations
- Leverage existing equipment
- Possible loading conflict with other missions

Requirements Summary

Key Requirements

- Provide PB data within 5
 hours from sites to MOC 80%
 of the time
- Processing Alerts as part of real time stream within 0.5 seconds, 95% of the time
- Support Automated MOC for RT and PB data acquisition
- Station call-up with 15 minutes for spacecraft emergencies
 - Subject to view constraints

USN Existing Vs New Capabilities

Existing Commercial Network

No new capabilities are required

USN Sites

PrioraNet Worldwide Network of Ground Stations

USN Western Australia Remote Ground Station

Western Australia RGS

- Dongara
- BAE Systems Australia Sub to USN
- S/X/Ku-Band 13 Meter Support
- * Automated Operation
- Redundant Components

Charles "Pete" Conrad Remote Ground Station

Hawaii RGS

- * South Point, Hawaii
- **❖ S/X/Ku-Band 13-Meter Support**
- **S-Band 3.5 Meter Support**
- * Automated Operation
- Redundant Components

GLAST Coverage Area

GLAST Uplink RF Requirements

Frequency 2106.4 MHz

Modulation BPSK/PM

Subcarrier Frequency 16 kHz

Modulation Index 1.0 radian

▶ Data Rate 2.0 Kbps

Symbol Rate 2.0 Ksps

Data Format NRZ-M

Uplink TC Path

Uplink Configuration Remote Ground Station

GLAST Downlink Requirements

Frequency 2287.5 MHz

Modulation OQPSK

Data format NRZ-M

▶ Data Type Telemetry

▶ Data Rate 2.5 Mbps

Coding

Convolutional Coding
 Rate _

Reed Solomon
 223,255

Telemetry Downlink Path

Downlink Configuration Remote Ground Station

Downlink Encoding and Modulation

Network Connectivity

Networking

- ► Two Fully redundant Network Management Centers (NMC) in Newport Beach, CA and Horsham, PA. NMC's are connected to Level-3's managed IP backbone via DS-3 (up to 45Mbps) circuits.
- Multiple Remote Ground Stations (RGS) connected to Level-3's managed IP backbone via T1 and E1 (1024 to 2048Mbps) circuits.
- Standardized on Cisco equipment for Routers, VPN's and Firewalls.
- ► All NMC's and RGS's are interconnected via a meshed VPN configuration. VPN's are based on Cisco hardware and software utilizing standards based IPSEC 3DES encryption.
- Meshed VPN configuration provides "closed" WAN environment.

Networking – Customer Interface

- The DMS uses the FastCopy/Fest application by Softlink
 - Guaranteed file delivery including automatic/manual recovery from the actual point of failure
 - Extensive logging
 - Several data verification methods
 - Authentication and strong encryption
 - Scheduling and hold/resume functions
 - Compression capability

USN Operations Overview

Scheduling

- Schedule Requests submitted via Email
- 7-day schedules released by USN
- USN Scheduling Conflict Resolution Process when USN backup equipment is used.
 - Priority to LEOP and Spacecraft emergencies.

Orbit Ephemeris Updates

FTP-Pull of TLE data files from MOC or NORAD

Mission Operations Support Documentation

- Mission Support Plan
- Network User's Manual (MSP and Ground Network ICD provide info)

Operations Reporting

- Daily Status Reports
- Monthly Mission Status Reports

Testing

- ► USN is prepared to provide equipment and personnel to meet all mission requirements prior to launch.
 - RF Compatibility tests
 - GRTs
 - End to End
 - Launch Rehearsals
- ► CDRLS such as a Mission Support Plan, Ground Station Configurations and Ground Network ICD can be supplied as required.

USN System Testing

- Integrated System Testing
 - Part of GLAST Ground SystemTest Plan
 - Used for testing with MOC

Documentation

- MOC USN
 - MOC establishes ICD and Ops Agreement with USN
- Spacecraft-Ground ICD
 - Spectrum establishes this ICD
 - It is applicable to both sites

Schedule

- ► All USN Circuits in place 3/05
 - CSR by 8/20/04
- ► Testing commences 7/05

Universal Space Network Services Backup Slide

Downlink Processing

